In [1]:
import ff

I used 3 as the generator for this field. For a field defined with the polynomial x^8 + x^4 + x^3 + x + 1, there may be other generators (I can't remember)


In [2]:
generator = ff.GF256int(3)
generator


Out[2]:
GF256int(3)

Multiplying the generator by itself is the same as raising it to a power. I show up to the 3rd power here


In [3]:
generator*generator


Out[3]:
GF256int(5)

In [4]:
generator*generator*generator


Out[4]:
GF256int(15)

In [5]:
generator**1


Out[5]:
GF256int(3)

In [6]:
generator**2


Out[6]:
GF256int(5)

In [7]:
generator**3


Out[7]:
GF256int(15)

The slow multiply method implemented without the lookup table has the same results


In [8]:
generator.multiply(generator)


Out[8]:
GF256int(5)

In [9]:
generator.multiply(generator.multiply(generator))


Out[9]:
GF256int(15)

We can enumerate the entire field by repeatedly multiplying by the generator. (The first element is 1 because generator^0 is 1). This becomes our exponent table.


In [10]:
exptable = [ff.GF256int(1), generator]
for _ in range(254): # minus 2 because the first 2 elements are hardcoded
    exptable.append(exptable[-1].multiply(generator))

# Turn back to ints for a more compact print representation
print([int(x) for x in exptable])


[1, 3, 5, 15, 17, 51, 85, 255, 26, 46, 114, 150, 161, 248, 19, 53, 95, 225, 56, 72, 216, 115, 149, 164, 247, 2, 6, 10, 30, 34, 102, 170, 229, 52, 92, 228, 55, 89, 235, 38, 106, 190, 217, 112, 144, 171, 230, 49, 83, 245, 4, 12, 20, 60, 68, 204, 79, 209, 104, 184, 211, 110, 178, 205, 76, 212, 103, 169, 224, 59, 77, 215, 98, 166, 241, 8, 24, 40, 120, 136, 131, 158, 185, 208, 107, 189, 220, 127, 129, 152, 179, 206, 73, 219, 118, 154, 181, 196, 87, 249, 16, 48, 80, 240, 11, 29, 39, 105, 187, 214, 97, 163, 254, 25, 43, 125, 135, 146, 173, 236, 47, 113, 147, 174, 233, 32, 96, 160, 251, 22, 58, 78, 210, 109, 183, 194, 93, 231, 50, 86, 250, 21, 63, 65, 195, 94, 226, 61, 71, 201, 64, 192, 91, 237, 44, 116, 156, 191, 218, 117, 159, 186, 213, 100, 172, 239, 42, 126, 130, 157, 188, 223, 122, 142, 137, 128, 155, 182, 193, 88, 232, 35, 101, 175, 234, 37, 111, 177, 200, 67, 197, 84, 252, 31, 33, 99, 165, 244, 7, 9, 27, 45, 119, 153, 176, 203, 70, 202, 69, 207, 74, 222, 121, 139, 134, 145, 168, 227, 62, 66, 198, 81, 243, 14, 18, 54, 90, 238, 41, 123, 141, 140, 143, 138, 133, 148, 167, 242, 13, 23, 57, 75, 221, 124, 132, 151, 162, 253, 28, 36, 108, 180, 199, 82, 246, 1]

That's now our exponent table. We can look up the nth element in this list to get generator^n


In [11]:
exptable[5] == generator**5


Out[11]:
True

In [12]:
all(exptable[n] == generator**n for n in range(256))


Out[12]:
True

In [13]:
tuple(int(x) for x in exptable) == ff.GF256int.exptable


Out[13]:
True

The log table is the inverse function of the exponent table


In [14]:
logtable = [None for _ in range(256)]
# Ignore the last element of the field because fields wrap back around.
# The log of 1 could be 0 (g^0=1) or it could be 255 (g^255=1)
for i, x in enumerate(exptable[:-1]):
    logtable[x] = i
print([int(x) if x is not None else None for x in logtable])


[None, 0, 25, 1, 50, 2, 26, 198, 75, 199, 27, 104, 51, 238, 223, 3, 100, 4, 224, 14, 52, 141, 129, 239, 76, 113, 8, 200, 248, 105, 28, 193, 125, 194, 29, 181, 249, 185, 39, 106, 77, 228, 166, 114, 154, 201, 9, 120, 101, 47, 138, 5, 33, 15, 225, 36, 18, 240, 130, 69, 53, 147, 218, 142, 150, 143, 219, 189, 54, 208, 206, 148, 19, 92, 210, 241, 64, 70, 131, 56, 102, 221, 253, 48, 191, 6, 139, 98, 179, 37, 226, 152, 34, 136, 145, 16, 126, 110, 72, 195, 163, 182, 30, 66, 58, 107, 40, 84, 250, 133, 61, 186, 43, 121, 10, 21, 155, 159, 94, 202, 78, 212, 172, 229, 243, 115, 167, 87, 175, 88, 168, 80, 244, 234, 214, 116, 79, 174, 233, 213, 231, 230, 173, 232, 44, 215, 117, 122, 235, 22, 11, 245, 89, 203, 95, 176, 156, 169, 81, 160, 127, 12, 246, 111, 23, 196, 73, 236, 216, 67, 31, 45, 164, 118, 123, 183, 204, 187, 62, 90, 251, 96, 177, 134, 59, 82, 161, 108, 170, 85, 41, 157, 151, 178, 135, 144, 97, 190, 220, 252, 188, 149, 207, 205, 55, 63, 91, 209, 83, 57, 132, 60, 65, 162, 109, 71, 20, 42, 158, 93, 86, 242, 211, 171, 68, 17, 146, 217, 35, 32, 46, 137, 180, 124, 184, 38, 119, 153, 227, 165, 103, 74, 237, 222, 197, 49, 254, 24, 13, 99, 140, 128, 192, 247, 112, 7]

In [15]:
tuple(int(x) if x is not None else None for x in logtable) == ff.GF256int.logtable


Out[15]:
True

In [ ]: